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Transition metal allenylidene complexes#8=C=CR;), which Table 1. Cycloaddition of Propargylic Alcohols with Phenol
. . . T 1 * - * a
belong to a series of unsaturated carbene derivatives, have attracteférivatives Catalyzed by [Cp*RuCl(u2-SMe).RuCp*Cl] (1a)

a great deal of attention in recent years as a new type of
organometallic intermediateAlthough remarkable developments
of the reactivity of allenylidene complexes have been attalfed,
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only a few examples of catalytic reactions via allenylidene 1 BmR=Ph Lnaghihol 3,80 83
. . . . = e -naphtho! y
intermediates have been reported until foW.As regards the 3 TRIDRCH™ 3 81
catalytic activity of allenylidene complexes, we have recently 4 R e e naghthol g
disclosed the ruthenium-catalyzed propargylic substitution reactions & 2a,R=Ph 7-methoxy-2-naphthol 3,97
i ’ ; 7de 2a,R=Ph 3,5-dime thoxyphenol (4a) 5a, 96
of propargylic alcohofs with various heteroatom- and carbon- ghe 2a R=Ph 3,4,5-trimethoxyphenol @b) 5b,93
i i i i gde 2a,R=Ph 4-(dime thylamino)phenol (4c) 5¢,27
c_entereql nucleophiles tq afford th correspo_ndlng products_ in high of M Roph & (giemytanimyphenol () A
yields with complete regioselectivitiésnterestingly, the reactions 114¢ 2a,R=Fh 3,4,5-trimehylphenol (de) Se, 50

are only catalyzed by thiolate-bridged diruthenium complégash

as [Cp*RuClf,-SRYRUCp*Cl] (Cp* = 15-CsMes; R = Me (14)),

but not by monomeric ruthenium complexes. A key step of these
novel reactions is the selective attack of nucleophiles on the
electrophilic G atom in the allenylidene ligand at the thiolate-
bridged diruthenium complexés.

Some theoretical studies of the allenylidene complexes indicate
that the G and G carbon atoms of allenylidene ligands are the
electrophilic centers, while thes@arbon atom is a nucleophilic
center? In fact, a variety of nucleophiles stoichiometrically attack
either the G or C, carbon atom of allenylidene ligands to afford
Fischer-type carbenes or alkynyl complexes, respectidyring
our study, we have now found the novel unprecedented cycload-
dition of propargylic alcohols with phenol derivatives catalyzed
by 1 to afford naphthopyrans and benzopyrans with potential use
for photochromic materials. In this reaction, both of the electrophilic
C, and G, carbon atoms in the allenylidene ligands are subjected
to attack by nucleophiles (Chart 1). Preliminary results are described
here.

Chart 1

Treatment of 1-phenyl-2-propyn-1-oRg) and 2-naphthol in
CICH,CH,CI in the presence ofal? (5 mol %) and NHBF, (10
mol %) at 60°C for 1 h afforded 1-phenylfi-naphtho[2,1b]pyran
(3a) in 80% isolated (83% GLC) yield (Table 1; run 1). Neither
other products nor regioisomers 8 were detected by GLC and
IH NMR. The reaction proceeded even at room temperature, but a
prolonged reaction time was required to produga When
1-naphthol was used in place of 2-naphthol, a mixture of unidenti-
fied products was obtained.

* Corresponding author. E-mail: uemura@scl.kyoto-u.ac.jp.
T Kyoto University.
*+ Science University of Tokyo.

7900 m J. AM. CHEM. SOC. 2002, 124, 7900—7901

a All the reactions of (0.60 mmol) with phenol derivative (3.00 mmol)
were carried out in the presencelaf(0.03 mmol) and NBF4 (0.06 mmol)
in CICH,CH,CI (15—30 mL) at 60°C for 1 h.? Isolated yield ¢ GLC yield.
dFor 3 h.¢10 mol % oflawas usedf 20 mol % oflawas used? For 19

Reactions of various propargylic alcohols have been carried out
in the presence ofia Thus, the condensation of 1l-aryl- and
1-alkenyl-substituted propargylic alcohob(-d) with 2-naphthol
at 60°C for 1 h proceeded smoothly to afford the corresponding
1-substituted H-naphtho[2,1b]pyrans Bb—d) in moderate to high

3a,R=Ph,R'=HRZ=H _ Phos
3bR=0-MeCHg, R'=H. R?=H o0

R
R 1 2
3c,R=p-FCeH, R' = H,R®=H -
RA O 3d R=Ph,C=CH, R' =H,R%=H g ::'RR':}SME
OO 3e,R=Ph,R'=Br,R?=H Me
R

3f,R=Ph,R'=H,R?=OMe

yields (Table 1; runs24). Unfortunately, the reaction of 1,1-diaryl-
substituted propargylic alcohols such as®®H)C=CH did not
proceed even after a prolonged reaction time (72 h), probably due
to the steric bulkiness of two phenyl groups. 6-Bromo-2-naphthol
and 7-methoxy-2-naphthol similarly reacted wathto afford similar
adducts Beand3f) in high yields with complete selectivities (Table

1; runs 5 and 6).

The reactions oRa with 3,5-dimethoxyphenol4@) and 3,4,5-
trimethoxyphenol 4b) gave the corresponding#1-benzopyrans
(5a and 5b) in excellent yields (Table 1, runs 7 and 8). The
molecular structures d8c and 5a were unambiguously clarified
by X-ray analysis. When some 4-aminophendls 4nd 4d) were
used, the formation of the corresponding pyrabsgnd5d) was
observed in moderate yields (Table 1, runs 9 and 10). A mixture
of 4H-1-benzopyran3e) and propargylic ethei5f) was formed in
a 1 to 2 ratio by the reaction @awith 3,4,5-trimethylphenol4e)

for 3 h (eq 1), but onlfpewas obtained (50% yield) by prolonging
the reaction time to 19 h (Table 1, run 11). It is well-known that

Claisen rearrangement &f afforded not5e but 5g. In fact, the
p-TsOH-catalyzed reaction of 1,1-diarylpropargylic alcohols with
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ligands!*15but the cycloaddition described here is the first example
of the use of the allenylidene ligands as audit in the catalytic
NS process.
In summary, we have found a novel ruthenium-catalyzed
cycloaddition of propargylic alcohols with 2-naphthols and phenols
bearing electron-donating groups to afford the correspondiig 1
naphtho[2,1k]pyrans and #-1-benzopyrans, respectively, in mod-
erate to excellent yields with a complete regioselectivity. This
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catalytic reaction provides a simple and efficient one-pot synthetic

2-naphthol in the solid state has been reported recently, where only ethod for a new type of skeleton of photochromic naphthopyrans
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3,3-diaryl-H-naphtho[2,1b]pyrans, namely the regioisomers of 1,1-
diaryl-1H-naphtho[2,1b]pyrans @), were obtained in only low to
moderate yields via Claisen rearrangement of the initially produced
propargylic ether$? This result indicates that the novel reaction
presented in this paper did not proceed via Claisen rearrangemen
of propargylic ethers. We consider th&itis transformed intcbe
via allenylidene intermediates (vide infra).

Starting propargylic alcohol2@) was completely recovered in
the reaction oRa with 1,2,3-trimethoxy- and 1,2,3-trimethylben-
zenes. These results show that no propargylation of aromatic

and benzopyrans.
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compounds occurs under the same reaction conditions. It is
noteworthy that the cycloaddition of propargylic alcohols proceeds
only when phenols bearing electron-releasing groups are employed.
This is in contrast to the propargylic substitution reactior2af
where simple phenols are used to produce the corresponding phenyl
propargylic ethera

Treatment of the allenylidene comple®)( which could be
prepared from the reaction @awith 1 equiv of2ain the presence
of NH4BF, in tetrahydrofuran (THF) at room temperature for 30
min,’® with 5 equiv of 2-naphthol in CICKCH,CI at 60°C for 1
h led to the formation oBain quantitative yield (eq 2). Furthermore,

cpy /Cp‘_‘BF‘ ~/°H Ph
Ru o
. Mes L [Pesme CG o
e b P ®
4BF, i 60°C, 1h
PhJLH 6 3a

reaction of2a with 2-naphthol in the presence of 5 mol % ®ht
60 °C for 1 h afforded3ain 74% yield. These results indicate that
this catalytic reaction proceeds via allenylidene complexes such as
6.

Because the £atom of the allenylidene complexes is favorably
attacked by nucleophilédthe catalytic formation o8amay occur
by the reaction pathways shown in Scheme 1. Thus, the initial attack
of the naphthol oxygen to the,Gtom ofA results in the formation
of a carbene compleR®, which subsequently leads to a vinylidene
complex C via Claisen rearrangement d. Complex C is
transformed into an alkenyl compléx by nucleophilic attack of
the oxygen atom of the hydroxy group to the @&tom of C.
However, the possibility of a nucleophilic attack of the carbon atom
at position 1 of 2-naphthol to the,Catom of the allenylidene
complexes may not be excluded. Further investigations to elucidate
the detailed reaction mechanism are currently in progress.
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Esteruelas and co-workers have already reported stoichiometric
reactions of allenylidene complexes with organic molecules containg
two nucleophilic heteroatoms such as pyrazole and 2-aminopyridine
to give the corresponding alkenyl complexes with heterocyclic
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